#### Tests of CF Flanges: M. Snow, Indiana

## Issues relating to CF Flanges:

NOTE: CF and VCR seals are our standard in system

- Properties of CF flanges under internal pressures are not specified by manufacturers->need for testing. What to test?
- Internal pressure: how much can it hold?
- 3. Thermal cycling: will it develop a leak?
- 4. How do you know the cold test was valid?

## What has been tested?

| size | Flange<br>material | O-ring<br>material | Bolts (SS<br>Washers) | Torques (in-lbf,size) | Internal<br>Pressure |
|------|--------------------|--------------------|-----------------------|-----------------------|----------------------|
| 1.33 | Al,SS              | Al,Cu              | Brass,                | 16,8-32               | 200 psid             |
|      |                    |                    | SS                    | 22,8-32               |                      |
| 2.75 | Al, Ti,            | Al,Cu              | Brass,                | 62,1/4-20             | 200 psid             |
|      | SS                 |                    | SS                    | 96, 10-28             |                      |
| 4.5  | SS                 | Cu                 | SS                    | 120,5/16-             | 200 psid             |
| 6    | SS                 | Cu                 | SS                    | 24<br>120,5/16-24     | 200 psid             |
| 8    | SS                 | Cu                 | SS                    | 120,5-16/24           | 200 psid             |

#### What was done?

He leak test at room T, 200 psid internal pressure before cold cycling in bell jar, pressure gauge connected

Thermally cycled to T~80K at least 6 times while internally pressurized (T of He gas verified by P gauge)

Last cycle: removed from under LN2 bath and quickly(~2 min) transferred to bell jar and evacuated, leak check

Removed, heated with heat guns to room temp. reinserted and leak checked again





## Tests done at IUCF



# Tests done at IUCF



# Leak rates (all E-10 torr-l/sec)

| Test | CF Composition              | Leak rate      | Leak rate | Leak rate |
|------|-----------------------------|----------------|-----------|-----------|
| rig  | (SS understood)             | initial (bkgd) | cold      | final     |
| A    | 1.33, 2.75Al, Ti,<br>4.5, 6 | 1(1)           | 9(8)      | 1(1)      |
| В    | 1.33, 2.75, 6,8             | 2.7 (1)        | 91(7.7)   | 250 (6)   |
| D    | 2.75 A1, 2.75               | 1(1)           | 1(1)      | 1(1)      |
| E    | 1.33 Al, 1.33               | 1(1)           | 19(8.5)   | 11(5.1)   |
|      |                             |                |           |           |

## What about leak plugging in air?

- 1. Intentionally introduce a 4E-6 leak at room T in a pair of 1.33 inch CF flanges with 200 psid He by loosening bolts (detect with sniffer)
- 2. Immerse in LN2, extract and bag immediately, get 1.7E-5 leak
- 3. Allow frost accumulation: leak =1.7E-5, 1.7E-5, 1.3E-5 after 5,10,15 minutes
- 4. Heat to room temp, leak 4E-6 wet, dry
- ->No evidence that frost plugged this leak

#### **CONCLUSIONS:**

- 1. No reason not to use Conflat flanges in system
- 2. Also being used at low T in other labs (JLAB)